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Abstract

Origami traces its origins to an ancient art form transforming flat thin 
surfaces into various complex, fabulous 3D objects. Nowadays, such 
transformation transcends art by offering a conceptual framework for 
non-destructive and scale-independent abstractions for engineering 
applications across diverse fields with potential impact in education, 
science and technology. For instance, a growing number of architected 
materials and structures are based on origami principles, leading to 
unique properties that are distinct from those previously found in 
either natural or engineered systems. To disseminate those concepts, this 
Primer provides a comprehensive overview of the major principles and 
elements in origami engineering, including theoretical fundamentals, 
simulation tools, manufacturing techniques and testing protocols 
that require non-standard set-ups. We highlight applications involving 
deployable structures, metamaterials, robotics, medical devices and 
programmable matter to achieve functions such as vibration control, 
mechanical computing and shape morphing. We identify challenges 
for the field, including finite rigidity, panel thickness accommodation, 
incompatibility with regular mechanical testing devices, manufacturing 
of non-developable patterns, sensitivity to imperfections and identifying 
the relevant physics at the scale of interest. We further envision the 
future of origami engineering aimed at next-generation multifunctional 
material and structural systems.
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planar state is referred to as the flat-folded state. In general, there 
may be more than one flat-folded state for an origami structure. 
The Kawasaki–Justin theorem gives the necessary and sufficient con-
ditions locally for an origami vertex to be flat-foldable. For an origami 
vertex with N consecutive panel angles (N must be even) labelled from 
1 to N (Fig. 1g), then the vertex can be flat-foldable if:

α α α α α− + − … − = 0 (2)N1 2 3 4

The variable N is called the degree of a vertex, defined as the 
number of creases incident on a vertex. The Kawasaki–Justin theorem 
deals with the panel angles but does not guide how an origami vertex 
can be folded flat, which relates to the M/V assignment (see Fig. 1h). 
The condition about fold directions for a flat-foldable vertex is the 
Maekawa–Justin theorem — if an origami vertex is flat-foldable, then:

M V− = ±2 (3)

The Maekawa–Justin theorem is a locally necessary but not suf-
ficient condition; for a crease pattern to be globally flat-foldable, all 
its vertices must be locally flat-foldable, which is a necessary but not 
sufficient condition. Any flat-foldable vertex must have even degrees 
(precondition of the Kawasaki–Justin theorem), which leads to a neces-
sary criterion for global flat foldability: the two-colourability of a crease 
pattern (see Fig. 1e). A graph with all even degree vertices can be called 
a Eulerian graph, and it has been proven that Eulerian graphs satisfy 
two-face colouring6. However, flat foldability is hard7. The readers are 
referred to refs. 7,8 for more details.

Rigid foldability
During the folding-induced transformation, if the deformation of 
the sheet is only concentrated along the creases, without bending or 
stretching the panels, it is referred to as rigid origami. Such origami 
structure can be folded while keeping all regions of the paper flat 
and all crease lines straight6. Analysis of rigid foldability is of interest 
because of the increasing use of new materials other than paper for 
origami applications. Whereas paper is quite forgiving if the panels 
must deform, other materials such as metal, wood and stiff plastics are 
not. The well-known Miura-ori pattern, eggbox pattern, waterbomb 
pattern and Yoshimura pattern are all rigid origami, but the square 
twist9,10 and hypar11 patterns are not rigid origami.

A condition for rigid foldability given a single origami vertex12,13 
specifies that the product of rotation matrices about all the creases 
(say N in number) of a vertex should be the identity matrix (I)14,15, for 
any kinematically admissible configurations, using the Belcastro–Hull 
theorem:

R Q I∏ ρ α( ) ( ) = (4)
i

N

ρ i α i
=1

where Rρ and αQ  are the transformation matrices in terms of the turn-
ing angles ρi and panel angles αi, respectively (see Fig. 1i). These matrices 
are given by:
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The degree-four vertex shown in Fig. 1i can be used as an example; 
here, N = 4 and when α α= = 60°1 4  and α α= = 120°2 3  for a particular 
partially folded state, the turning angles are ρ ≈ −53.13°1 , ρ ρ= = 90°2 4  

Introduction
Origami, the ancient art of paper folding, has proven to be a powerful 
concept, inspiring innovations in science, engineering and beyond. 
Folding can transform one geometric form to another, usually from 
two dimensions to three dimensions. This transformation creates 
new possibilities for scientists and engineers to design multifunc-
tional machines, lightweight structures and architected materials. 
The ideas of folding-induced origami structures can be found in 
nature1 (Fig. 1a), and in thin walled structures undergoing sudden 
large deformation2,3 (Fig. 1b,c). A recent noteworthy engineering 
application of origami is the starshade structure, which is illustrated 
in Fig. 1d.

Mathematically, an origami structure is locally a 2D, discrete mani-
fold, which is characterized by a set of creases, lines on the manifold 
where (sharp) folding occurs and folding angles of the creases that 
determine the amount of folding. The creases divide the manifold into 
2D pieces, called panels. The creases can either be straight or curved 
lines. When all the creases are straight lines, the panels are polygonal 
in shape4. The points of intersection of the creases are referred to as 
the vertices. The local structure of an origami design refers to any 
portion of the origami that is away from boundaries and intersec-
tions of multiple panels5. Some origami do not have any boundaries, 
forming enclosed polyhedra. In the remainder of this Primer, unless 
otherwise stated, origami refers to patterns with straight creases and  
thin panels.

Depending on the direction of the folding of the crease, when 
folded up creases are categorized as mountain folds and when folded 
down they are valley folds. The mountain/valley (M/V) assignments are 
relative because, depending on the viewing angle, mountain folds can 
be viewed as valley folds, and vice versa, but they are always pointing 
to opposite directions (locally). Such a convention leads to the crease 
pattern, a blueprint for origami structures, as shown in Fig. 1e.

Developability
Following the instruction of the crease pattern, typical origami folds 
up from a flat sheet into a 3D shape through isometric, or nearly isomet-
ric, transformation, without subjecting the sheet to stretch or tearing. 
Such an origami structure, with a flat initial state, is called developable  
(for example, Hypar origami). Theoretically, when the thickness of the 
sheet is assumed to be zero, the volume encompassed by the origami 
structure in its developed state is zero. To determine whether an 
origami structure is locally developable from its crease pattern, the  
N panel angles (for example, α i N{ , = 1 … }i ), or sector angles, meeting 
at a vertex can be added up. If their sum is 360° (or π2 ), this vertex can 
be flattened onto a plane (see Fig. 1f). Mathematically, this condition 
is expressed as:

α α α α π+ + + … + = 2 (1)N1 2 3

If all vertices of an origami structure are developable, this 
origami is globally developable. This rule only applies to vertices with 
neighbourhoods that are locally 2D manifold.

Flat foldability
When the folding-induced transformation includes a state (other 
than the developed state) in which the entire origami structure can be 
flattened onto a plane, typically with overlapping of panels, the corre-
sponding origami is called flat-foldable (for example, the Kresling tube). 
Flat foldability is a new, independent property from developability, for 
example, the eggbox is not developable but flat-foldable. The folded 



Nature Reviews Methods Primers |             (2024) 4:40 3

0123456789();: 

Primer

and ρ ≈ 53.13°3 . The sign of the turning angle is obtained using the right-
hand thumb rule with the thumb pointing along each of the creases in 
a consistent direction (either inward or outward from the vertex) as 
the fingers curl along the arrows marked for ρi, as shown in Fig. 1i. If the 

direction of the thumb must change to follow the arrow marked for a 
turning angle, then this suggests a change of sign. From these choices 
of angles, it can be shown that the product of the rotation matrices 
about all four creases would be an identity matrix.
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Fig. 1 | Origami overview. a, Nature-inspired 
origami: microscopic bellows pattern of the Giant 
Hawkmoth Acherontia atropos shown in the inset1. 
b, Spontaneous Kresling pattern obtained by 
twist buckling experiment. c, Kresling pattern. 
d, Unfolding of a starshade origami. e, Crease 
pattern (left) of a crane (right) using the two-
colourability (colouring) property. f, A typical 
degree-four origami vertex in its developed state. 
g, Folded shape of a degree-four vertex (below: 
flat foldability condition). h, Single crease layout 
with a different mountain (thick continuous blue 
lines) and valley (thin dashed red lines): square 
twist (left panel) and Mars (right panel). i, Turning 
angles between the panels of a degree-four vertex 
used to apply the rigid foldability condition from 
the Belcastro–Hull condition. j, Venn diagram 
showing the relationship between flat foldability, 
developability and rigid foldability (left), with 
typical examples given (below). For a more complete 
list of patterns and their properties, please refer 
to Table 1. k, Thick origami models. Thickness 
accommodation of a waterbomb origami pattern 
using the offset hinge technique17. αi, panel angles; 
φi, crease angles; Br, Bricard linkages; Ci, i-th 
crease; ρi, turning angles. Part a, image courtesy of 
L. T. Wasserthal. Part d, image courtesy of NASA/JPL. 
Part k reprinted with permission from ref. 17, AAAS.

https://www.jpl.nasa.gov/edu/learn/project/space-origami-make-your-own-starshade
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The matrix approach is quite practical and useful when analysing ori-
gami structures with several vertices and creases, as the implementation 
can be naturally carried out using a computer program. This is typically 
done by modelling origami using Denavit–Hartenberg-based analysis16 
that is widely used in the analysis of linkages. The connection between 
linkages and origami is very useful, especially for thick origami17,18.

To ensure both sufficiency and necessity for rigid foldability, other 
detailed conditions (in addition to the Belcastro–Hull theorem12,13) 
must be carefully checked, such as the bird’s feet condition on M/V 
assignment19, which is both necessary and sufficient for a single vertex. 
Based on the rank deficiency of the kinematic Jacobian matrix (a linear 
expansion of the Belcastro–Hull theorem), a counting rule to calculate 
the generic degrees of freedom (DOFs) of a finite origami pattern has 
been developed14. When the generic DOF is greater than zero, the corre-
sponding pattern is rigidly foldable; otherwise, no decisive conclusion 
can be drawn. The counting rule is given as follows14:

∑N N k N= − 3 − ( − 3) (6)
k

kGDOF EO
>3

P

where NGDOF denotes the generic number of DOFs, NEO denotes the 
number of boundary edges of a pattern, k is the number of sides of a 
polygonal panel and N kP  denotes the number of k-sided polygons in an 
origami pattern. Based on the kinematic Jacobian matrix, a pattern 
with only triangular panels is guaranteed to be rigidly foldable if it has 
more than three boundaries7. However, this condition is too strict prac-
tically. For example, many degree-four origami patterns (patterns with 
only degree-four vertices) are rigidly foldable, but they cannot be 
determined by this formula and require case by case discussion20,21. 
The panel angles and M/V assignment are both critical for rigid fold-
ability (Fig. 1h). Some ways to predict the folding behaviour of rigid 
origami are to use mathematical tools such as spherical trigonometry4 
or computational origami simulations22.

It is important to realize that flat foldability, developability and 
rigid foldability are independent features of origami; having one fea-
ture does not imply the other (Table 1 and Fig. 1j). Different features are 
suited for particular engineering applications. For example, robotic 
actuation requires a quick deployment of motion and release of energy, 
and hence non-rigid origami with multistability is often exploited 
for those purposes. On the other hand, sandwich composite cores 
require mass production and high stiffness, and hence developable 
rigid origami patterns are often used.

Thick origami models
Origami patterns are commonly crafted from thin sheets (approaching 
zero thickness). To apply them to real engineering applications, 
thickness accommodation imposes additional constraints. In general, 
thick origami is treated on a case by case basis, and thus many methods 
exist to accommodate panel thickness23. By modelling thick origami 
using spherical linkages18, the folding creases remain unchanged and 
the panels are either tapered24 or offset25 for compact folding with 
least physical interference of panels. A kinematic approach has been 
proposed for rigid origami of thick panels, involving the replacement 
of spherical linkages with spatial linkages at origami vertices consist-
ing of four, five and six creases17. This is a comprehensive approach, 
which is capable of reproducing motions kinematically equivalent to 
those of zero-thickness origami (Fig. 1k). Meanwhile, to achieve the 
thick-panel folding of the non-developable vertex, auxiliary panels as 
intermediate links can be introduced to construct a plane-symmetric 
spatial linkage, which delivers compact folding26. Alternatively, a 
parallel-crease method can be used to create space for the panel 
thickness27; however, this method introduces extra DOFs as a four-
crease vertex is transferred into an eight-bar linkage with at least two 
DOFs. A recent contribution to the thick-panel origami consists of 
applying kirigami to the thick panels, whose advantage is to obtain 
the most compact folding of the Miura-ori patterns with uniform 
thickness28. Additional work has been done on the physical forms 
of crease lines, such as rolling-contact joints29 or compliant joints, 
which results in the variable kinematic models for the folding process. 
As there are many methods to treat thick-panel origami, it is difficult 
to determine which is the most efficient method without considering 
the practical case of interest. For example, for large-scale deployable 
structures, the folding ratio and the stiffness take the highest prior-
ity, whereas for micro-scale structures, the fabrication and flexibil-
ity take the main role. Hence, other methods are expected in future  
developments.

From an engineering perspective, a few representative origami 
patterns are considered in this Primer, including the Miura-ori pattern, 
the eggbox pattern, the waterbomb pattern and the Kresling tube.

Table 1 | A sample of origami patterns with featured 
properties, and applications

Pattern Featured propertiesa Engineering applications

Miura-ori 1 DOF, developability, rigid 
foldability, flat foldability, 
auxeticity

Space structures72, 
metamaterials30, 
frequency-selective 
surfaces170, robotics171

Blockfold 1 DOF, developability, rigid 
foldability, flat foldability, 
auxeticity

Foldcore83

Eggbox 1 DOF, rigid foldability, flat 
foldability

Sandwich structures172, 
metamaterials30

Waterbomb Developability, rigid foldability, 
flat foldability

Smart materials173, robotics 
(origami wheel)117,174, 
origami stents175

Yoshimura Developability, rigid foldability, 
flat foldability

Folded concrete 
structures168

Kresling tube Flat foldability, multistability Robotics34,46, impact 
mitigation176

Morph 1 DOF, rigid foldability, flat 
foldability, reversible auxeticity

Metamaterials31,121

Barreto–Mars 1 DOF, developability, rigid 
foldability, flat foldability, 
auxeticity

Solar cells177

Flasher 1 DOF, developability, auxeticity Solar sails178

Ron-Resch Developability, rigid foldability Energy absorption179

Miura-ori-
based tubes

1 DOF, rigid foldability, flat 
foldability

Robotics41

Square twist Developability, flat foldability, 
auxeticity, multistability

Metamaterials9, 
programmable antennas10

Hypar origami Developability, multistability Metamaterials4

Origami 
snapology

Rigid foldability Metamaterials180, wave 
guide181

Trimorph 1 DOF, rigid foldability, flat 
foldability, reversible auxeticity, 
multistability

Metamaterials32

This is not an exhaustive list. DOF, degree of freedom. aIncomplete list.
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These representative patterns are used as examples for origami 
experiments and manufacturing with desired rigid or non-rigid behav-
iour (see Experimentation). In the Results section, geometric descrip-
tions of origami structures are provided using these patterns, and their 
geometric mechanics features are discussed. The unusual properties 
of origami structures have enabled engineering applications across 
different fields and scales, including sustainable and resilient buildings, 
mechanical metamaterials, robotics and medical devices. Furthermore, 
basic information for testing origami and standard formats to share 
origami designs are recommended. The limitations and opportunities 
in the context of design and manufacturing of origami, and an outlook 
for the future of origami in engineering are envisioned.

Experimentation
This section presents experimental equipment and manufacturing 
techniques to create and test origami patterns. These patterns display a 
range of properties, including a tunable Poisson’s ratio30,31, multistabil-
ity32–36, tunable stiffness37–40 and others, such as shape morphing41–43 
and acoustics44,45. The experimental evidence of such properties 
requires careful sample manufacturing and the design of ad-hoc 
experimental set-ups. These set-ups are particularly important as the 
samples undergo large deformations simultaneously in longitudinal 
and transverse directions, owing to their intrinsic non-linear folding 
mechanisms. Different laboratory equipment is required depending 
on the type of experiment to be performed, for example, qualitative 
or quantitative. In the latter case, loading frames, prototyping 
machines, cameras, transducers and acquisition systems are needed to 
simultaneously test origami patterns and to record experimental data.

Manufacturing methods
Origami tessellations have a long history7. They can be realized by 
different manufacturing techniques and base materials. Some of the 
most common materials and techniques are addressed below.

Paper and polymer-based models. The simplest way to create 
origami patterns is by folding craft paper (for example, Mi-Teintes, 
Canson), cardboard, polyester film (for example, Grafix Drafting Film) 
or composite film (for example, Durilla Durable Premium Ice Card 
Stock)38,46–48. The folding lines can be marked or perforated with evenly 
spaced cuts. Laser cutters are used to perforate thin flat sheets along 
the folding lines, as shown in Fig. 2a. Other electronic cutting machines 
(for example, Silhouette CAMEO, Silhouette America) can also be used 
to perforate thin sheets that can be folded using origami principles. 
The main advantage of paper-based origami is its ease of realization. 
Furthermore, craft paper sheets have a very small thickness, thus pre-
venting panel thickness accommodation issues when extreme folding 
is achieved. Although very effective, this method can induce some 
difficulties in quantitative testing as the paper-based panels are very 
flexible. In fact, out-of-plane deformation may not only be localized on 
the creases but also in the panels through flexural deformation. This 
could lead to difficulty in the experimental validation of the underlying 
theory as the hypothesis of rigid foldability may no longer hold.

Computer numerical control milled models. A more effective method 
to create origami samples suitable for mechanical testing consists of 
assembling base components such as unit cell strips, panels and hinges, 
which are cut by a computer numerical control milling machine (such 
as the Roland MDX 540)49, as shown in Fig. 2b. The working principle 
of the milling machine concerns material removal through a rotating 

cutting tool driven by computer-aided design/computer-aided manu-
facturing (CAD/CAM) software. The base components can be made 
from different materials, such as polymeric (polycarbonate, polypro-
pylene) or metallic (thin aluminium or steel sheets) materials. The main 
advantage of this manufacturing method is its versatility and precision, 
which permits the realization of complicated shapes and multistable 
origami tessellations. In particular, this method allows fine-tuning of 
the energy landscape together with the mechanical properties of the 
tessellation, by varying the crease thickness, panel geometry and base 
material32. An attractive material to create zero-energy creases (free-
rotating hinges) is polypropylene as it guarantees excellent folding 
performance and fatigue resistance. On the other hand, if creases 
with specific rotational stiffness are required, these can be achieved 
by means of solid rubber (for example, silicon rubber)32.

3D printed models. Recent developments in additive manufacturing 
technologies have enabled the construction of intricate and com-
plex topologies at different scale levels50. In this context, 3D printing 
represents an alternative method to creating origami samples, as shown 
in Fig. 2c. The origami models are built layer by layer from a previously 
prepared 3D CAD file. Various materials and 3D printing technologies 
can be used depending on specific needs. For instance, origami tessel-
lations have been realized by fused filament fabrication51,52, material 
jetting53, selective laser sintering54, stereolithography5,55, digital light 
processing56,57 and, at the micro-scale, by two-photon polymerization 
laser lithography58. In addition, 4D printing adds the transformation 
over time (fourth dimension) to 3D printing, which has been used to cre-
ate multifunctional shape-morphing and self-foldable origami-based 
structures and materials42,59–62. The main benefit of additive manufac-
turing technique is its ability to make multi-material parts during a 
single printing step, thus avoiding complicated assemblage processes.

Folding and assembly
Once the manufacturing is completed, the next step is to fold along 
the creases and assemble the folded components to achieve the final 
origami structure. Developable patterns, such as the Miura-ori, can 
be realized by folding a single flat sheet of material along the crease 
lines. By contrast, non-developable patterns, such as the Eggbox, can 
be obtained through the folding and assembling of several sub-parts 
or pieces49. In the case of paper-based origami, the union among differ-
ent parts is usually achieved using flaps and either double-sided tape 
or paper glue. On the contrary, assembled plastic models are realized 
by glueing several modular base components. Conveniently, each unit 
cell or component should have several seats and/or extensions to allow 
an easy assembly.

Sample preparation and checks
The quality and integrity of the sample is fundamental for the success 
of the experiments. Some discrepancies between theoretical prediction 
and experimental results are commonly related to sample defects 
such as ageing, manufacturing and fatigue issues. For instance, if a 
crease is broken or damaged, an imperfection is introduced into the 
tessellation, deeply influencing the experimental results. For such 
reasons, before executing any mechanical test on origami tessellations 
(for example, uniaxial testing), a careful visual sample check should be 
done to verify the integrity of the pattern and its actual dimensions in 
the rest configuration should be verified with measuring devices (tape 
measure and caliper). In fact, the dimension of the sample in the rest 
configuration represents a common reference point for experiments, 
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Fig. 2 | Origami experiments and manufacturing. a–c, Different manufacturing 
techniques used to create origami tessellation: paper and polymer-based origami 
models via laser cutting47 (panel a), computer numerical control milled models 
realized using a milling machine49 (panel b) and 3D printed models5 (panel c).  
d,e, Set-ups adopted to perform uniaxial testing on origami tessellation: standard 

set-up (panel d) and Saint-Venant set-up49 (panel e). The Saint-Venant set-up 
allows the sample to freely expand or contract in the transverse direction during 
folding and unfolding. This effectively prevents the sample from assuming a dog-
bone shape and, instead, simulates the behaviour of a periodic system during 
uniaxial testing. Parts d and e adapted with permission from ref. 49, Elsevier.
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theory and simulations49. Thus, the dimensions of the sample are an 
essential parameter when load versus displacement experimental data 
are compared with theoretical or numerical simulations (for example, 
in MERLIN63).

Experimental set-ups
Origami tessellations are reconfigurable structures that exhibit simulta-
neous deformations in both the longitudinal and transverse directions. 
Further, origami systems can be highly stiff in certain directions and 
flexible in other directions37. Hence, different types of experimental 
apparatus and set-ups may be required to investigate the behaviour 
of origami structures depending on the nature of deformations and 
loading. Recently, experimental set-ups to perform the uniaxial tests 
have been proposed to demonstrate the unique Poisson’s ratio behav-
iour of origami metamaterials49. In this work, it has been shown that the 
gripping mechanism, connecting the ends of the sample to the loading 
frame, plays a key role in the quality of the results obtained from the 
testing machine. The standard way to connect the sample to the load-
ing frame is by clamping its ends to the machine, as shown in Fig. 2d. 
The drawback of this approach is that the gripping system prevents the 
free deployment of the pattern in the transverse direction, leading to  
non-uniform transverse deformation. This is evident by observing 
the shape assumed by the sample during tension and compression 
testing. In a tension test, the sample deforms into a dog-bone shape; 
in compression, it deforms into a barrel shape. The proposed gripping 
mechanism49 consists of a system of rail and sliders that allows proper 
attachment of the sample while permitting free transverse motion 
during the folding/unfolding process, as shown in Fig. 2e.

Such a system, called a Saint-Venant fixture, eliminates Saint-
Venant end effects during uniaxial testing experiments. This advanced 
set-up permits a free deployment of the constrained sample, thus 
ensuring that the origami tessellation remains truly periodic even when 
deformed in a tension or compression test. To obtain high-resolution 
quantitative information from experiments, a loading frame machine is 
required for folding/unfolding of the origami tessellation. The loading 
frame should be equipped with a load cell and a displacement trans-
ducer for recording the applied load as a function of the sample length. 
The whole experimental apparatus should be arranged horizontally to 
reduce gravitational effects and avoid out-of-plane instabilities that 
could arise during the experiments. Moreover, a Teflon plate should 
be placed underneath the sample to reduce friction and stick–slip 
phenomena. For the monitoring of the longitudinal and transverse 
deformation of the sample, a high-resolution camera must be placed 
orthogonally to the testing platform to record the experiments. This 
allows recording of the motion of a selected array of points, identified 
by coloured markers, via a digital imaging correlation and tracking 
method. To facilitate the post-processing analysis via digital imaging 
correlation, the colour of the markers should be chosen to enhance 
the contrast with the tessellation.

Different origami patterns may require different experimental 
set-ups. For instance, the Kresling pattern couples axial displacement 
(contraction/expansion) with twist, leading to non-rigid origami behav-
iour. To experimentally investigate this behaviour, fixtures that decouple 
the deformation modes are needed64. Figure 3 illustrates the experimen-
tal set-ups for either compression or torsion tests on individual Kresling 
cells as well as generic Kresling arrays. The arrays can be composed of 
an odd or an even number of cells, without any constraint on the chiral 
arrangement of any cell or group of cells. Both set-ups comprise two fix-
tures that connect the top and bottom surfaces of the Kresling origami  

to the loading frame machine, as illustrated in Fig. 3a. Both fixtures 
are equipped with multiple miniaturized magnets, ensuring connec-
tions between the Kresling and the loading frame, as shown in Fig. 3a,d. 
In both set-ups, the bottom fixture is the same and effectively restrains 
both rotational and axial movements, preventing any undesired rigid 
motion of the Kresling samples during the tests. Figure 3c,f shows the 
snapshots recorded during the experiments. During the tests, axial force 
and twisting moment are recorded using a force/torque sensor. Addi-
tionally, the axial displacement can be measured with a displacement 
transducer. For further details, the reader is referred to ref. 64.

Data collection and post-processing
The main data acquired during origami uniaxial testing are the load 
applied at one end of the sample, the length evolution of the sample 
and the transversal and longitudinal deformation during the folding/
unfolding process. A data acquisition system usually consists of a 
load cell and a displacement transducer to collect loads and displace-
ments, respectively. The acquisition system could be part of the loading 
frame used to perform the test or external to the testing machine. In 
the former case, the data acquisition is more straightforward but not 
as versatile as in an external system, where there are no limits on the 
number and type of transducers. In the case of an external acquisition 
system, it is common to use a cDaq (by National Instruments) or Arduino 
systems interfaced with a PC through software written either in Lab-
VIEW or MATLAB/Simulink. Analysis of the experimental data (load/
displacement) can be performed in a spreadsheet (such as Office Excel, 
LibreOffice Calc, IWork Numbers) or in programming languages (such 
as Mathematica, MATLAB or Python). A tailored experimental method 
is needed for monitoring the transversal and longitudinal deformation 
of the pattern together with the execution of the test. For this purpose, 
a digital imaging correlation analysis and tracking method is essential 
for the frame by frame analysis of the recordings of the experiments 
and for estimating the motion of the markers previously located on the 
vertices of the pattern unit cell. Several strategies can be adopted to 
perform this analysis. The simplest way is manually analysing a limited 
number of frames extracted from the recorded movie through open-
source software (for example, VLC, Quick Time combined with GIMP, 
or nanoCad). If a frame by frame analysis of the movie is required, this 
can be performed by ImageJ filament open-source software or through 
in-house software written in Mathematica, MATLAB or Python.

Actuation
The process of shape morphing in origami tessellations necessitates the  
utilization of external sources for actuation. The most employed meth-
ods for actuating origami structures include pneumatic actuation 
and magnetic actuation. However, the emergence of 4D printing has 
introduced the possibility of using stimuli-responsive materials that can 
respond, for instance, to light, heat or humidity (hygroscopic control).

Fluidic actuation. Fluidic actuation of origami involves using pressur-
ized air or gas to control and manipulate origami structures51. In this 
context, as the origami samples need to be inflated they must be made 
impermeable to prevent air leakage. Typically, this is accomplished by 
coating origami structures with a thin layer of polydimethylsiloxane 
or by manufacturing them using plastic sheets with creases engraved 
onto them. To operate this method, the structure must be linked to 
an air supply system, such as a compressor or a simple air pump. This 
system allows for the regulation of both air pressure and flow rate. 
As this actuation approach is tethered, the structure being activated 

https://www.videolan.org/vlc/
https://support.apple.com/downloads/quicktime
https://www.gimp.org/
https://nanocad.com/products/nanocad-free/
https://imagej.nih.gov/ij/index.html
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Fig. 3 | Set-up designed for conducting compression 
and torsion experiments on the Kresling origami. 
a–f, Free-rotating fixture (panel a) and free-translating 
fixture (panel d), set-ups in panels a and d mounted on the 
loading frame machine (panels b and e) and extracts from 
the record of the experiment at different times (panels c 
and f). The fixture in panel c enables free rotation that 
enables twisting of the Kresling cell (indicated by red 
arrows), whereas the fixture in panel f is attached to a linear 
slide system that enables unrestricted translation, allowing 
the Kresling array to undergo axial folding (indicated by red 
arrows). Adapted with permission from ref. 64, Elsevier.
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needs to be equipped with an inlet for connecting the air source to the 
origami structure through flexible tubing.

Magnetic actuation. Magnetic actuation involves the utilization of 
magnetic fields to govern and manipulate origami structures that are 
crafted from materials that respond to magnetic forces65,66. This is 
accomplished by integrating magnetic components into the origami 
structures, which are magnetized beforehand. Usually, these magnetic 
components are created by blending a silicone rubber precursor 
with specific proportioning of magnetic microparticles. The mag-
netic characteristics of these components are determined using a 
magnetometer. Subsequently, actuation is typically achieved using, for 
example, a 3D Helmholtz coil system capable of generating a uniform 
magnetic field, the direction and intensity of which can be altered by 
adjusting the current flowing through the coils. The primary advantage 
of this method is that it enables untethered control with fast actuation.

Results
Typical properties exhibited by origami tessellations are characterized 
by tunability and programmability. Tunable properties arise by virtue 
of the various folded states of the system and can be changed through 
the application of an active stimulus (for example, force). The compli-
ant folding of origami structures enables in situ control of the property 
they exhibit, making them excellent candidates for tunability. It has 
been demonstrated that several important mechanical properties, 
such as Poisson’s ratio30,31, elastic band gaps44,67, thermal expansion 
coefficients68 and anisotropic stiffness37,69, can be tunable in origami 
metamaterials. As the folding of origami is generally a smooth con-
tinuous process, the variation in the properties that are being tuned is 
also gradual. Programmability, on the other hand, refers to obtaining 
a property of interest based on variations in the design (for example, 
geometry). This enables an abrupt change in the properties of the ori-
gami tessellation with respect to the change in the programmability 
parameter70. Programmability parameters are typically associated with 
the geometric features of the panels or local defects that can be induced 
in the origami tessellations. In this section, the theoretical geometric 
results pertaining to kinematics of origami patterns, modelling frame-
works of non-rigid origami and some relevant properties (Poisson’s 
ratio, wave dynamics and multistability) are addressed.

Geometry of representative origami patterns
The configuration of an origami structure is characterized by its crease 
pattern as well as the dihedral angle between panels that define the 
folded state. The edges of the panels correspond to the folding creases 
or boundaries of the structure, and the points of intersection of the 
creases are the vertices. The configurational analysis of origami can 
be carried out using concepts of spherical trigonometry to determine 
direct relations between the dihedral angles of the creases meeting 
at a vertex71, and further determine the DOFs of the vertex. The DOFs 
of the entire origami structure, which may comprise several vertices, 
can be found using compatibility constraints imposed on the creases 
connecting adjacent vertices.

The Miura-ori pattern. The Miura-ori pattern was originally designed 
for use in space applications such as deployable solar arrays72. The pat-
tern can also be found in certain plant leaves in nature73. The Miura-ori 
is a periodic 2D tessellation (or lattice) with each unit cell having four 
parallelogram-shaped panels as shown in Fig. 4. The Miura-ori pattern 
is composed of degree-four vertices where each vertex has either three 

mountain folds and one valley fold or vice versa. The angle α denotes 
the smaller panel angle (Fig. 4). When all the panels are rigid, the 
Miura-ori pattern possesses a single DOF. All the dihedral angles 
between adjacent panels depend on one single arbitrary folding angle, 
such as the crease angle ϕ as shown in Fig. 4. The crease angle (ϕ or ψ) 
uniquely describes any partially folded state of the structure. In the 
fully developed state, all the dihedral angles are equal to π. In the com-
pletely flat-folded state, the dihedral angles are either 0 or 2π and the 
structure is rigid. The relation between the two crease angles (ϕ and ψ) 
of the Miura-ori is given by:

















ψ ϕ
αcos

2
sin

2
= cos (7)

The eggbox pattern. The eggbox pattern takes its name from its 
appearance in the partially folded state. The eggbox is a 2D tessellation 
formed with two types of degree-four vertices that are non-developable. 
One of the vertices has four mountain (or valley) creases. The other 
vertex has two mountain creases and two valley creases. The pattern 
has parallelogram-shaped panels arranged in a fully symmetric way as 
shown in Fig. 4. When all the panels are rigid, the eggbox pattern 
deforms as a deployable single-DOF structure. The eggbox pattern 
exhibits smooth folding from one flat-folded state, where two dihedral 
angles are zero and the other two are π, to the other flat-folded state 
where the dihedral angles swap the values. Similar to the Miura-ori, the 
relation between the crease angles (ϕ and ψ) of the eggbox is given by:

ψ ϕ
αcos

2
cos

2
= cos (8)
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The waterbomb pattern. The most widely studied waterbomb 
origami74 comprises degree-six vertices, as shown in Fig. 4. Depending 
on the tessellation, the degree-six waterbomb unit cell can fold in 
different curved configurations. Figure 4 shows the tessellation of a 
waterbomb unit cell with four mountain and two valley creases inter-
secting at a common vertex75. In general, the degree-six waterbomb 
unit cell has three DOFs. However, if the folding mode is restricted to 
be locally symmetrical (four mountain creases with the same dihedral 
angle), then the configuration of the structure at any partially folded 
state can be obtained from a single folding angle chosen as an inde-
pendent variable. The relation between the folding angles ξ  and γ is 
given by76:

 

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
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α

γ
tan

2
= −

1
cos

tan
2

(9)

The Kresling tube. The triangulated cylinder/tube of the Kresling 
pattern undergoes non-rigid folding. The tessellation is formed by 
connecting unit cells along one direction as shown in Fig. 4. The crease 
pattern of a single unit cell is shown in Fig. 4 and is characterized inde-
pendently by the parameters a, b, α and n, where n represents the 
number of edges (or cells) in each unit cell. The parameter c is also 
defined as shown in the figure. The unit cell can exhibit bistability 
depending on its geometric parameters and materials. The two stable 
states of the unit cell are denoted zero and one, and the corresponding 
folded configurations are characterized by the twist angles ψ0 or ψ1, 
respectively, and the unit cell heights h0 or h1, respectively. The two 
stable states are characterized by a geometric equivalence of the crease 
pattern parameters a, c and α. Therefore, enforcing these parameters 
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to be the same in the two stable states, they can be calculated71 as 
follows:

( )
( )
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x x x

= cos
− cot

( + 1) ( + 1) + csc

(10)

π
n

h
b

π
n

−1 0 0

0
2

2

0
2

0
2 20















































( )
a b

h
b

x

x
= +

csc

+ 1
(11)

π
n0

2
0
2 2

0
2

( ) ( ) ( )
c

b x x x x

x
=

( + 1) + cot cot + 2 +

+ 1
(12)

h
b

π
n

π
n

2

0
2 2

0
3

0 0
2

0
2

0 





 




















∓

∼

∼ ∼ ( )
( ) ( ) ( ) ( )

x
π
n

h

h h
= 2sin

sin cot csc − [ ] − cos

1 + [1 ± ]cos
(13)

π
n

π
n

π
n

π
n

π
n

0,1

2 2 2

2

with 
∼
h h b h b= ( / ) − ( / )1

2
0

2. The twisting angles for the two stable 
configurations are given by ψ x= 2tan0
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Structural analysis of origami
Some of the pioneering studies on origami structures focused on 
their rigid origami kinematics, which are of key interest for deployable 
structures and robotic applications. Some well-known software in this 
category includes the Rigid Origami Simulator that runs a projection-
correction algorithm for solving linearized compatibility equations22, 
the GPU-accelerated Origami Simulator77 and the Rhino plug-in Crane78.

However, in the past decade, interest in the use of origami for 
mechanical and civil engineering applications such as energy absorp-
tion, vibration control and load-bearing has gained prominence. 
Investigation of origami for such applications requires modelling the 
non-rigid behaviour of origami and carrying out structural analysis 
simulations. Besides shell-based finite element analysis, structural 
analysis of origami is typically carried out using an efficient reduced 
order model called the bar and hinge model79, which captures the fold-
ing deformations, bending of panels and in-plane stretching of panels. 
In this model, the panels are replaced by bars that are placed along 
all the creases of the origami pattern as well as the panel diagonals. 
The stiffness associated with folding and panel bending is modelled 
through rotational springs or hinges between the triangulated truss-
type panels. Some of the first bar and hinge models79 were formu-
lated to capture small deformations of origami tessellations during 
structural analysis. Later, improvements were made to bar and hinge 

models to capture various features such as isotropic panel stretching37, 
complex panel-bending deformations and large non-linear deforma-
tions63. For example, Fig. 5a shows bending of an eggbox tessellation 
using MERLIN software that implements a non-linear mechanics for-
mulation associated with the bar and hinge model63. Figure 5b shows 
representative simulation results by MERLIN, obtained from a uniaxial 
tension test of origami tessellations, that show good agreement with 
experimental data.

Poisson’s ratio
Poisson’s ratio is an important property that dictates the deforma-
tion of materials. The magnitude of Poisson’s ratio of linear elastic 
isotropic materials is restricted within a small range from –1 to +0.5. 
Interestingly, origami metamaterials can exhibit Poisson effects that 
vary with the folded geometry of the structure30 and are beyond the 
conventional range as they are typically not isotropic. For example, 
the Miura-ori pattern can exhibit in-plane Poisson’s ratio values all the 
way from negative infinity to zero, achieving the extreme values when 
it is in a developed state or the flat-folded state. The negative Poisson 
effect in Miura-ori makes it an auxetic metamaterial. On the other hand, 
the eggbox pattern displays tunable in-plane Poisson’s ratio values 
from zero to positive infinity as it folds from one flat-folded state to 
the other. The Poisson’s ratio results for Miura-ori and eggbox origami 
metamaterials are shown in Fig. 5b, where good agreement between 
theory and experiments is obtained. Recently, novel origami patterns 
were discovered, namely Morph31 (see Fig. 5b) and Trimorph32, which 
can exhibit any real value of Poisson’s ratio (negative infinity to positive 
infinity) depending on their folded configuration. Origami metamate-
rials exhibit a wide variation in the value of Poisson’s ratio as they are 
being folded or deformed. However, recent research has shown that it 
is also possible to design origami patterns in such a way that the Pois-
son’s ratio value is held nearly constant under large deformations80. 
All these results indicate the capability of origami metamaterials to be 
programmed or tuned to display desired Poisson effects.

Wave dynamics
Origami metamaterials have two major features that are useful for 
applications related to wave propagation and vibrations. First, the 
high contrasting levels of stiffness in the system in terms of crease 
folding, panel bending and panel stretching can lead to elastic band 
gaps, which denote ranges of frequencies where waves do not propa-
gate. Second, the frequency range of the band gaps and other related 
characteristics can be easily tuned by compliant folding of origami. 
A technique called Bloch wave reduction can be employed to carry out 
wave propagation studies in periodic media such as origami tessella-
tions44. Although typical calculations to study dynamics of tessellated 
structures could involve the consideration of several unit cells, the 
Bloch wave approach reduces the calculation effort to a single cell 
within the periodic system by virtue of its translational symmetry. 

Fig. 4 | Representation of the fusion of geometry, mathematics and art 
through origami tessellations. The unit cell, which forms the basis of the four 
tessellations considered, with geometrical parameters dictating their mechanics 
and configurations (left column). Miura-ori (from left to right): unit cell, unit 
module, tessellation in a deployed state and two images showcasing different 
folded states of a physical Miura-ori tessellation. Eggbox: non-developable 
nature of the pattern illustrated by its unit cell (left) requires that several strips 
cut from a flat sheet (middle-left) be assembled and glued together to obtain the 

desired tessellation (middle-right). Different folded states of a physical eggbox 
tessellation (right). Waterbomb (from left to right): unit cell, unit module, crease 
pattern and folded state. Kresling (from left to right): perspective and folded 
state top views of an eight-sided polygon unit cell, and one-piece crease pattern 
with reverse crease directions used to create the four-storey Kresling tube (right). 
a, b, side lengths; α, panel angle; ξ, γ, folding angles; φ, ψ, crease angles; c, height 
of the pattern; h, height of the Kresling unit cell; i (hi, ψi), 0 or 1 for the two stable 
states; M, mountain assignment; V, valley assignment.
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Unlike several lattice structures, where the structural interactions are 
restricted to the nearest neighbouring nodes of a unit cell, origami 
metamaterials may exhibit non-local structural behaviour44. Hence, the 
application of Bloch boundary conditions should be careful enough 
to ensure that such (beyond nearest neighbour) nodal interactions 
are considered for accurate prediction of dynamic properties. Using 
such an approach, researchers have studied wave dynamics and band-
gap structures in origami metamaterials. For example, modal char-
acteristics of standard Miura-ori and eggbox patterns revealed the 
presence of elastic band gaps that are tunable by virtue of their folded 
configuration and programmable by virtue of their panel geometry44. 
That is, the frequency ranges of the band gaps obtained could be con-
trolled (in theory) by subjecting the origami tessellation to folding, or 
by redesign of panel sizes or angles. In another study on wave dynam-
ics, 1D origami-based lattice structures with triangulated cylinders 
were designed and experimentally found to exhibit rarefaction waves 
for applications in impact mitigation45, as shown in Fig. 5c. There are 
two aspects that influence the tunable dynamic properties of origami 
lattice structures: the tunable geometry of the system by virtue of 

folding; and the mass and stiffness of panels and hinges. The former 
aspect is typically independent of the base material with which the 
origami structure is made. The latter aspect depends on the material 
used, and therefore influences the natural frequency ranges and, to 
some extent, the modal characteristics. Hence, the material should 
be chosen based on the target frequencies relevant to the engineering 
application. However, the tunability of the dynamic properties can be 
explored as a function of the choice of base material.

Multistability
Some origami structures experience multiple stable states such 
that each of them locks a particular configuration. These structures 
with multiple stable states can serve as the basic unit cell for archi-
tected materials, creating properties that differ from those of tradi-
tional materials. For example, the snap-through action (for example, 
the deformation process between different stable states) of the Kresling 
origami can be activated by non-contact forces, such as those generated 
by magnetic fields46. In addition, the multistable origami concept can 
be used to create a tessellation with switchable mechanical properties: 
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Fig. 5 | Mechanics of origami structures. a, Structural analysis of origami using 
MERLIN software. b, Poisson’s ratio results of the Miura-ori, eggbox and morph 
origami metamaterials from theory, experiments (all experiments use 3 × 7 units) 
and MERLIN simulations. The Poisson’s ratio variation for Miura-ori is negative and  
for eggbox is positive. The morph pattern is composed of seven layers, each 
having two units in the Miura-ori mode and one unit in the eggbox mode 

(see inset), and exhibits a Poisson’s ratio switch from positive to negative. c, Wave 
propagation in Kresling tube origami. d, Different multistable states of Trimorph 
origami. Scale bar, 20 mm. ψ, crease angle; VWL, Poisson’s ratio. Part b adapted 
with permission from ref. 49, Elsevier. Part c reprinted with permission from 
ref. 45, AAAS. Part d reprinted with permission from ref. 32, Wiley.
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the Trimorph pattern, made by tessellation of tristable origami unit 
cells, can switch between different metastable phases to produce 
distinct stiffness, anisotropy and Poisson’s ratio32, as shown in Fig. 5d.

Conceptually, the multistability in origami structures usually 
comes from two types of incompatibility. The first is the incompat-
ibility between the stress-free states of the folding hinges between 
the origami panels. This happens when the zero-energy, stress-free 
states of the folding hinges (or rest angles) of an origami structure are 
not compatible with its rigid folding kinematics, such that the folding 
hinges can never be all stress-free at the same time81. The second type is 
the incompatible panel geometries that forbid rigid folding, such as the 
square twist, Kresling pattern and many others11,36,45,46,70,82. Overcoming 
rigid foldability requires bending and stretching of the panels, which 
creates energy barriers between stable states where panels are usually 
flat and unstretched. Both types of incompatibility could be present in 
one pattern, at the same time, such as in the Trimorph pattern, in which 
the line defect is caused by the first source whereas the point defect is 
caused by the second source32.

Applications
Owing to the inherent cross-disciplinary nature of its design principles, 
origami is a rich source of inspiration for creating cutting-edge mate-
rials and structures with a broad range of applications. A particular 
example of successful engineering application is foldcore sandwich 
panels83. A non-exhaustive list includes applications in engineering15, 
physics31, material science30, microrobotics84, waveguiding85, impact 
mitigation45, space structures (starshade origami), solar technologies86 
and artificial muscles87. Some distinguishing characteristics of origami 
are scalability and high deployability84,88–90. Scalability broadens the 
spectrum of applications across multiple length scales as the behaviour 
of origami structures is primarily governed by geometry in several 
cases. High deployability enables extremely reconfigurable shapes 
and tunable mechanical properties in static and dynamic regimes to be 
achieved. Thus, origami principles can inspire design of materials and 
structures with myriad applications87,91–93. Origami has generated ideas 
for futuristic infrastructure development, has inspired the creation of 
several artificial materials concepts, including metamaterials, has been 
used to create soft robots and medical devices and has enabled efficient 
transport of large structures in space applications. It is to be noted that 
the application areas discussed below are not mutually exclusive. Appli-
cations towards one topic (for example, mechanical metamaterials or 
soft robotics) can have relevance to applications related to another 
topic (for example, infrastructure or medical devices).

Sustainable and resilient infrastructure
Novel origami-based mechanisms have been implemented in architec-
ture to create responsive building skins and adaptive diagrid façades 
capable of maximizing solar shading, acoustic performance, energy 
efficiency and structural performance86,94. The energy efficiency inter-
ventions on buildings, such as wall insulation, usually remain fixed 
over time regardless of the climatic conditions. On the contrary, the 
use of kinetic origami-based building skins can lead to maximizing 
energy efficiency at all hours of the day, optimizing the relation between 
internal comfort and exterior climate conditions. For example, some 
studies showed that kinetic origami-based facades optimize daylight 
by approximately 50% from March to September and about 30% from 
October to February, compared with the case of static façades, thus 
improving indoor visual and thermal comfort95,96. Another example is 
the futuristic shape-adaptive shading origami-based system installed 

on the facades of Al Bahar Towers, located in the financial centre of 
Abu Dhabi97,98. The motile façade installed on these towers reduces the 
internal temperature by 50% with a substantial decrease in energy con-
sumption for air conditioning, diminishing CO2 emissions by 1,750 tons 
per year99. Furthermore, origami-based systems are starting to be used 
to create kinetic solar arrays capable of tracking sun motion and, thus, 
maximizing solar energy intake100,101.

Origami principles of reconfigurability and deployability can 
offer a valuable contribution to creating robust and resilient build-
ings, potentially minimizing material usage, thus leading to a dramatic 
reduction of embodied CO2 emission96,102,103. In this context, there have 
been several efforts by researchers to obtain large-scale deployable 
structures inspired by origami behaviour. For example, pneumatic and 
multistable origami structures have been shown to allow the design of 
large-scale structures that can be deployed from a very compact con-
figuration33, as shown in Fig. 6a (top). Another example involves light-
weight canopy structures that can be realized by coupling and stacking 
of origami tubes in different directions37, as shown Fig. 6a (middle). 
This leads to deployable roofs with high out-of-plane stiffness. Other 
researchers used modified geometries to create novel accordion-type 
shelters with improved structural stability and stiffness104, as shown in 
Fig. 6a (bottom).

Mechanical metamaterials
Metamaterials are artificial materials that can exhibit exotic properties 
superior to constituent materials105. Mechanical metamaterials are a 
subclass of metamaterials whose properties of interest are mechanical 
in nature, such as acoustic, thermal or elastic. Typically, metamateri-
als are obtained by repeating a unit cell whose geometry is designed 
once and cannot vary over time. Contrastingly, origami can transform 
its geometry continuously from a folded to an unfolded configura-
tion, thus widening the design space. As metamaterial properties are 
strictly related to the unit cell geometry, origami permits achieving 
extremely tunable and reprogrammable mechanical properties106–108. 
Moreover, the relationship between stiffness of the panels and the 
creases provides opportunities to design the energy landscape of 
the resultant metamaterials109–111. This is useful to attain multistability, 
self-deployment or mechanical computing systems112. Origami design 
principles have also been successfully applied to conceive origami-based 
metamaterials exhibiting auxetic behaviour30,113,114, tunable Poisson’s 
ratio36,38, self-locking115,116, high strength-to-weight ratio117,118 and tunable  
stiffness39,111,119,120. Some researchers have shown that, by properly 
designing kinematic paths, it is possible to achieve lockable and flat-
foldable modes38,121 (Fig. 6b). In addition to extreme static mechanical 
properties, origami-based metamaterials permit the achievement of 
tunable dynamic properties. For instance, the morphing of the origami 
tessellation leads to controlling electromagnetic or elastic waves122,123, 
deflecting light124, and opening and widening band gaps44,85,125–127. 
Origami metamaterials can also exhibit interesting coupling behaviours 
that are not typically observed in conventional materials, such as 
shear–normal coupling32 and compression–twist coupling effects128.

Soft robotics
In recent years, origami has been a source of inspiration for several 
applications in robotics. Soft robotics applications require gradual 
changes in stiffness and reconfigurability. Origami structures are well 
known to exhibit multistability, tunable stiffness and shape morphing, 
and hence can meet the design requirements for soft robotics. Exploit-
ing origami-based design principles, robotic arms have been realized 

https://www.jpl.nasa.gov/edu/learn/project/space-origami-make-your-own-starshade/
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through the uniaxial repetition of Kresling unit cells capable of multi-
directional morphing, grasping objects and exploring hard-to-reach 
areas via magnetic actuation46,65,129,130, as shown in Fig. 6c. Within this 
framework, origami morphing capabilities allow the realization of 
grippers131, artificial hands that gently grasp fragile objects without 
breaking them132–134. Origami design principles can also inspire the 
creation of programmable artificial muscles with multidimensional 
actuation87. Origami robots capable of multimodal deformations51,129 
and navigation (for example, crawling, jumping and swimming) indicate 
the potential for advanced applications in this field.

Medical devices
The progress in rapid prototyping technology and the rising demand 
for increasingly miniaturized tools fostered the implementation of ori-
gami design in the biomedical industry for in vivo or ex vivo purposes. 
The scalability, high deployability and extreme packaging capabilities 

of origami make them particularly suitable for minimally invasive medi-
cal devices135,136. The auxetic nature of several origami patterns permits 
the conception of novel surgical tools that can access the human body 
through a small incision, travel in a very compact state to the intervention 
destination and deploy in their functional shape to execute the surgery. 
Origami designs have been explored for facilitating the execution of 
biopsy137, MRI-guided radiofrequency ablation and catheter insertion138 
or inspection of hard-to-reach sites139. Origami-based deployable 
surgical reactors have been designed for potential use in face-lift 
operations140 and adopted to create novel orthopaedic implants141,142 
and tissue scaffolds143,144. Origami-based self-folding microrobots 
have been realized to enable encapsulation, gastrointestinal micro-
surgeries145 and drug delivery146. Origami-based structures have been 
conceived to assist retinal microsurgery89,147 and as a support system 
for optimizing the insertion of flexible instruments in robot-assisted 
procedures148. Within this framework, origami-based microgrippers 
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have been designed for the capture and retrieval of objects and  
biopsies149,150, minimizing invasiveness and potential human errors.

Space technology
Space structures, such as solar arrays or satellites, are large-scale 
structures that need to be compactly transported and deployed in 
target orbits. Efficient transport of such structures requires them to be 
lightweight and able to be folded into a small volume. Origami patterns 
can be implemented in the design of extremely lightweight, densely 
packed membranes and devices to be deployed once placed at target 
locations in space. Deployable membranes can serve as solar sails, 
propelled by solar wind, for exploration missions; as solar power arrays 
for satellites, for solar energy collection, conversion and transmis-
sion; as reflect array antennas; as space telescopes; and as protective 
shields151,152. The Miura-ori pattern was a key invention that enabled 
compaction and deployment of space structures72,153–155. Design of 
origami-based solar sails has evolved over years, for example, with a 
different deployment technique that uses radial segments, wrapped 
in spirals around a central hub, that unfold tangentially156. The pattern 

resembles a moonflower just after opening, and is nicknamed ‘origami 
flasher’101,157,158 (starshade origami). Another variant, a four-quadrant 
square solar sail is extended in the diagonals by telescopic booms. The 
recent Kresling pattern1,2,159,160 allows cylinders to be actively folded and 
unfolded, similar to bellows, and is applied to the Sunshield project 
of the IXO-Space Telescope161, the Mars Rover drill protection and for 
origami antennas of space–ground communication81.

Reproducibility and data deposition
Reproduction of samples
Physical samples of origami are made with various methods. In gen-
eral, the kinematics of origami structures is primarily driven by its 
geometry and is less sensitive to the materials being used, which is 
one of the many virtues of origami designs. However, deviations in the 
geometric structure, such as misalignment in the crease pattern, could 
lead to discrepancy from the expected behaviour. In a previous study, 
experiments and numerical simulations showed that geometric imper-
fections could hinder the foldability of origami structures and increase 
its compressive stiffness47. This effect is less apparent when the origami 

Glossary

Bird’s feet condition
A single-vertex crease pattern can be 
rigidly folded if, and only if, it contains a 
bird’s foot, where a set of three creases 
of the same mountain/valley (M/V) 
assignment are separated sequentially 
by angles strictly between 0° and 
180°, plus one additional crease of the 
opposite assignment.

Bloch wave reduction
A discrete Fourier transformation-
based technique that enables efficient 
analysis of infinitely periodic lattice 
systems.

Colouring
The crease pattern of a flat-foldable 
origami structure (for example, crane) 
can be coloured such that no two 
neighbouring regions are assigned the 
same colour while using as few colours 
as possible.

Crease pattern
The pattern of creases left on the 
surface after an origami structure 
has been unfolded.

Creases
Marks left on the material surface after 
a fold has been unfolded.

Degree-four vertices
Vertices delimited by four creases 
or four panels. For example, 
parallelogram-based origami is 
composed of degree-four vertices.

Developable
Origami that can be unfolded into 
a flat sheet without overlapping or 
deformation of the panels.

Dihedral angle
The angle between adjacent 
panels, which describes the current 
configuration.

Elastic band gaps
The frequency range within which 
elastic wave propagation is prevented 
through the medium.

Extensions
Appendages on the panels that 
can be placed and glued onto the 
matching seats.

Flat-foldable
Origami that can be folded into a 
flattened state of zero volume.

Foldcore
A sandwich structure consisting of thin 
stiff facesheets and thick, low-density 
core made of an architected material 
(for example, origami).

Folding angles
The angles that are required for one 
panel of an adjacent pair to rotate until 
it meets the other panel in a consistent 
direction, which could be either the 
dihedral angle or its supplementary 
angle.

Kirigami
The Japanese art of cutting and folding 
thin sheets of materials (for example, 
paper) from flat into three-dimensional 
objects.

Linkages
Mechanisms built from stiff bars 
connected by freely rotating joints (rigid 
links).

Origami
The art of folding paper (or other 
surfaces) into three-dimensional 
shapes, usually from uncut squares or 
other continuous shapes.

Panels
The basic elements of an origami 
structure that occupy the area bounded 
by creases or borders of the surface.

Poisson’s ratio
The negative of the ratio of transverse 
strain to longitudinal strain in a material 
subject to uniaxial loading.

Right-hand thumb rule
A commonly used rule to determine 
direction of rotational quantities and 
associated vectors. Here, it is used to 
determine the direction or sign of the 
turning angles corresponding to an axis 
of rotation placed along the crease.

Rigid origami
Origami that can be folded while 
keeping all regions of the surface 
(for example, paper) flat and all crease 
lines straight.

Saint-Venant end effects
A small region near the point of load 
with non-uniform distribution of stress, 
where the effect of the exact form of the 
loading cannot be ignored.

Seats
Grooves made by material removal for 
precise placement of joints.

Tessellations
Coverings on a surface, using one or 
more patterns (tiles) with no overlaps 
and no gaps.
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is made with compliant (or soft) materials but becomes severe for stiff 
materials. For Miura-ori, the square residual of the Kawasaki–Justin 
condition (for example, Kawasaki excess) correlates approximately 
linearly with the increase in stiffness of imperfect Miura-ori structures47. 
Small geometric imperfections stiffen the originally programmed mode 
but generally do not alter the mode shape.

Data deposition
Origami structures are usually shared in data formats that store meshes, 
which must include at least two pieces of information: the coordinates 
of the vertices (or nodes); and the groups of vertices that belong to each 
face (or panel). A typical example of such a format is the OBJ format, 
which is supported by the Rigid Origami Simulator77, the Origam-
izer162 and MERLIN63. Although the STL format is the most common 
for 3D printing and animation editing, it is not suitable for origami 
because all faces in STL must be triangular, whereas polygonal faces 
are common in origami designs. Recently, researchers formulated the 
flexible origami list data structure (FOLD) format that is dedicated to 
origami design163. Compared with the standard industrial formats, 
the FOLD format not only stores the static information of an origami 
design but also allows frames to be collected that depict the folding 
process of an origami structure. For flat-folded origami, the FOLD 
format includes the topological stacking order of faces that overlap 
geometrically to distinguish different folded states. The FOLD format is 
gradually becoming popular among the origami community. Origami 
Simulator21 and MERLIN63 support the FOLD format. Note that all 
formats mentioned above apply to both partially folded origami and 
its flat crease pattern.

Limitations and optimizations
Most current developments in origami engineering are based on an 
adaptation of existing origami patterns or are those that gained atten-
tion by serendipitous discovery. Principles-based systematic design of 
new origami patterns that can exhibit exotic engineering properties 
is a challenging problem. Although there have been developments in 
the recent years towards inverse design of origami for engineering 
applications, they are still in the rudimentary stages. The theoretical 
or numerical design of origami patterns for target requirements is 
an active area of research164–166 and more developments are needed 
in this direction, to make origami engineering versatile across appli-
cations. The challenges arise from two contexts — one related to the 
choice of design variable space and the other related to the choice of 
engineering properties that are explored. Further, in most cases, the 
designs must satisfy requirements related to developability, flat fold-
ability or rigid folding, which constraints the solution space. In terms 
of applications, the design of crease hinges, especially in the context of 
thick origami, is not systematically investigated and hinders large-
scale and reliable use of origami structures made from thick sheets of 
material or thick-panel prisms.

Behaviour of origami patterns is particularly influenced by 
the presence of imperfections in their geometry. Most studies on 
origami patterns demonstrate the results through prototypes made 
from regular symmetric structures with no imperfections. However, 
the presence of geometric imperfections in the patterns can lead to 
unexpected behaviour. Hence, extensive studies by incorporating 
imperfections owing to manufacturing defects should be performed 
while investigating the suitability of origami for applications.

Limitations of efficient manufacturability of origami structures 
also exist, especially in the context of non-developable patterns. 

Most current methods involve manual assembling of individual mod-
ules to form the final tessellated structure. Further, in the context of 
developable patterns, the tessellated structures need manual folding 
through creases marked on the entire sheet. Advanced manufacturing 
techniques such as 3D printing can be investigated to seek potential 
alternatives to these limitations.

Exploring micro-scale sample experimentation remains a 
relatively unexplored territory demanding further investigation. 
From a mathematical point of view, origami structures exhibit 
scale-independent properties. However, from an engineering 
perspective, larger-scale experiments behave differently from micro-
scale origami, as the process of miniaturizing origami introduces 
significant complexities, owing to the changing underlying physics 
governing the mechanical response at different scales. These com-
plexities encompass various factors, including the substantial impact 
of Van der Waals forces on the mechanical response of micro-scale ori-
gami, the intricate challenges associated with manufacturing owing to 
limited materials and manufacturing technologies capable of achieving 
nanometre precision, as well as the development of miniature testing 
platforms.

Origami structures can be highly kinematic in nature with mul-
tiple DOFs. Thorough analysis of the structure’s mobility should be 
carried out before adapting origami for applications. If unwanted 
modes of mobility are found to exist, appropriate constraints 
should be applied on the structure to lock or guide it into desired  
configurations.

Outlook
Although origami science is a more mature field, origami engineering 
has the potential to revolutionize the fields of engineering and design 
by enabling the creation of complex, lightweight and adaptable struc-
tures across scales, which can be manipulated and deployed in various 
applications. Beyond modelling and manufacturing of origami, auto-
mated folding and actuation can lead to major advances especially with 
multi-physics considerations (for example, magnetic actuation46,167). 
Thus, origami engineering has potential for continued advances in sev-
eral fields ranging from robotics to space structures, architecture and 
medical technology. The latter field holds great potential, especially 
as medical doctors and engineers collaborate in a true interdiscipli-
nary fashion including actual experiments in animals with potential 
for further findings in humans. Modelling of an origami structure is 
problem-specific, and therefore a single framework may not be read-
ily applicable. Therefore, researchers have adopted context-specific 
modelling approaches for origami. As origami ideas permeate differ-
ent fields, several origami modelling frameworks and packages are 
expected to be developed in the future. Alongside, one could expect 
various design approaches to also be developed. The material used 
to make the origami may play a key role and challenge the develop-
ment of manufacturing processes for origami-based structures. 
Although many recent studies on origami use paper-based models 
to demonstrate ideas, real applications — depending on the length 
scale of interest — could use various materials ranging from polymeric 
materials at the micron scale58 to construction materials such as steel 
or concrete168 that could help reshape our infrastructure towards more 
sustainable solutions. Other fascinating materials to be explored are 
biological materials and living tissues, which could revolutionize the  
medical field169.
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